
Renormalised perturbation theory for a general D-dimensional isotropic anharmonic oscillator

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1984 J. Phys. A: Math. Gen. 17 1449

(http://iopscience.iop.org/0305-4470/17/7/012)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 08:30

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/17/7
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 17 (1984) 1449-1460. Printed in Great Britain 
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Institute of Chemistry, A Mickiewicz University, 60-780 Poznan, Poland 

Received 16 June 1983, in final form 13 October 1983 

Abstract. Hypervirial theorems are applied in order to obtain easily perturbation series 
(PS) for eigenenergies and expected values of power of the radial coordinate of a general 
D-dimensional isotropic anharmonic oscillator (IAO(D)). In the next step the renormalisa- 
tion method is introduced to obtain renormalised PS allowing the eigenenergies of IAO(D) 
to be calculated with a high accuracy in a whole range of quantum numbers n, 1 and for 
high anharmonic constants. 

1. Introduction 

The study of quantum IAO(D) is of considerable interest, not only for purely theoretical 
considerations, but also from the point of view of practical applications in chemical 
physics and nuclear physics. In these applications accurate and simple computation 
methods are needed. 

The literature available on higher-dimensional IAO is, however, rather limited. Bell 
et a1 (1970a, b) have computed the energy levels of two- and three-dimensional quartic 
oscillators for quantum numbers n < 50 and 1 < 10 by numerical diagonalisation of 
matrices of large dimensions. 

Pasupathy and Singh (1981) have formulated the exact quantisation condition 
generalising the WKB condition for any isotropic potential, but its applicability is limited 
to states with 1 = 0 only. Lakshmanan and Kaliappan (1980) have adopted the semi- 
classical Bohr-Sommerfeld quantisation method but their analytical formula is expected 
to be satisfactory only for a large quantum number n. 

Recently, Seetharaman et a1 (1982) have derived a formula for I A O ( ~ )  with 
potential V = i( w r ) 2  + hr4 for energy levels via the WKB method. For the same potential 
Mathews et a1 (1982) have presented a very simple and accurate analytic formula for 
the energies of IAO(D), D s 3. 

In this work we derive PS for the energy and expected values of powers of the 
radial variable by employing the hypervirial relations (Hirschfelder 1960) for IAO( D )  
with potential: 

k = O  k = O  

D 
x 2 =  2 x f ,  

k = O  
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1450 JMakarewicz 

where A is a perturbation parameter, 

r = ( m w o / f i ) l J 2 x ,  w o = ( 2 ~ , / m ) I i 2 ,  u k  = ( f i /  v k /  woh 

and m is a mass of the oscillator. 

and use it to combine the perturbation and WKB techniques. 

of a general IAO(D). 

We also introduce a resummation of PS grounded on the Caswell (1979) approach 

This allows us to obtain a simple method for generating formulae for eigenenergies 

2. Perturbation series for IAO(D) 

The Schrodinger equation for IAO( D )  after introducing hyperspherical coordinates 
(Smith 1960) can be separated into hyper-radial and hyper-angular parts: 

( H - E ) R ( r ) = O  
where 

H = - f ( d 2 / d r 2 + [ ( D -  1) / r ]d/dr-A2(R)/r2)+ V(Ar), ( 2 a )  

(26) 
0 for D =  1, 

for D >  1, A2 = { L ( L +  0 - 2 )  
( A 2 ( R ) - A 2 )  Y(R)=O,  

where 

cL(r) = R ( r )  y(n) .  

The Hamiltonian H obeys the commutation relations: 

[ r’, H] = $ j (  ( j + D + 2) r’-2 + 2r’-’d/dr), 

[d/dr, H ] = d V / d r + [ ( D -  1)/2r]d/dr. 

The hypervirial theorems require that ([ W, H I )  vanish for solutions of equation ( 2 a ) ,  
where 

e 

((. . .))=i (. . . )R2(r ) rD- ldr .  
0 

From equations (3a,b) and using W = r’ d/dr, the hypervirial relations which 

(4) 

generalise those for D = 1 (Swenson and Danforth 1972, Lai and Lin 1982) are 

E(r ’ )  = (r’V)+& j +  l)-’(r’+’ d V/dr)-Q( j +  l)-’j(  j ’ -  ( D  - 2)2)(r’-2). 

For the potential of the form (1) these relations give the following equations: 

where 

A, =a(  j+4) - ’ (  j +  2)[( j +  D ) (  j + 4 -  D )  - 4 ~ ~ 1 ,  

B , = 2 ( j + 2 ) - ’ ( j + l ) ,  C j k ’ = 2 + 2 k / j .  (5b)  
Now, if we expand E and (r’) in the PS with respect to the parameter A :  
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then applying the Hellmann-Feynman theorem, we find (Grant and Lai 1979) 

Taking into account equations (4) and ( 5 a , b )  we obtain recursion relations for the 
coefficients Rk( j ) :  

Rk( j +  2 )  = EoB,Rk(j) + A,-2Rk( i- 2 )  

The above equations together with the initial conditions &(O) = 8k ,0  are sufficient to 
generate the coefficients Ek of the PS and further coefficients 8, of the energy series 
in terms of uk = A uk: k 

E = go+ 8 , u l  + 8 0 1 u 2 +  %,U:+ 802u:+ 8 , , ~ ~ ~ 2 + .  

=c 8, n u p  
n k  

where 

n =  ( n l n 2 . .  . n M ) ,  ( n l n 2 . .  . f l k o  . . .  O ) = ( n l n  , . . .  nk). 

Some of the first 8, for D =  1 are given by the following 

( 9 )  

8 0 -  - E  0 - 2 & 7  = i  8, 1 = -%(63 + 1 1  8.5, + 1 1  E ~ ) ,  

8, = $( 1 + E > ) ,  8 2  = -&67 + 1 ~ E ~ ) E ,  (10) 

80, = & ( 5 + E 2 ) E ,  8 0 2  = -&( 19277 + 82908 + 393 E ' )  E .  

3. Renormalisation of perturbation series 

3.1. The choice of renormalisation parameter for the quadratic-quartic oscillator 

Usually the Schrodinger PS is only an asymptotic series, however we use a rearrangement 
of the terms in the potential V ( A r )  to improve the asymptotic properties of the PS. 
The new PS is still divergent but its divergence begins to be important only for very 
high terms. So, truncation after a finite number of terms gives reasonable energy 
values which can be optimised by choosing a proper partitioning of the Hamiltonian. 
In order to illustrate this technique we start with the specific example of the quadratic- 
quartic oscillator for which we can write: 

v = 4r2+ ur4 = 

where w is some parameter. 

+ u(r4  + (1 - w 2 ) r 2 / 2 u )  

If we now introduce, independent of U, a parameter p by the definition 

and transform the variable r into pw-"' we obtain 

vm = wrtp2+  W(p4-pp2)1 
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where 

w = uw-3. 

Knowing the PS in terms of U, we can generate the PS in terms of w because taking 
into account the form of V ( p )  we have 

Expanding w = (1 -pw)-'j2 and U" = w"(1 - p ~ ) ~ " / *  in power series and equating 
both sides of equation (12) we obtain the coefficients 8; as functions of the p (some 
of the first coefficients 8; are given by equations (18b) in § 3.2). The improvement 
the convergence of PS depends on the proper choice of p parameter. In order to 
consider the possible ways of the determination of p, let us calculate the first-order 
energy 

(13) 

The exact energy E is lower than E(') since E"' is the functional of energy 
( 4 ( w ) H 4 ( w ) ) ,  where 4 ( w )  is the eigenfunction of a harmonic oscillator of a frequency 
w. Thus, the optimum value of w can be chosen from the condition 

E"' = w ( 8 0  + w - ~ u (  8, -;@go)). 

dE"'/dw = 0, ( 1 4 4  

implying the equation for U :  

6J3=W+(481/80)U. 

This result means that p = 48, /  go (see equation (1 1)). The same result is obtained 
from the condition proposed by Killingbeck (1981) 

dE'"/dp = O .  (14b) 

It is interesting that an identical value of p is obtained (see Caswell 1979) from the 
following equation 

d,??;"'/dp = 0 (14c) 

where 

is the first-order energy of quartic oscillator ( V = r4). The optimum value of /3 obtained 
for the limit U + 00 determines the optimum p for an arbitrary U. This result is valid 
also when we calculate /3 for Nth-order energy E"' of the IAO(D) with the potential 
v = +r2 + urZM.  

The determination of p from equation (14c) is the simplest because E ( N ) ,  defined 
analogously to I?'", is independent of U. Let us note, however, that equations ( 1 4 4 -  
( 1 4 4  for E(N) can have no real solutions if N > 1 as E"' and also are not the 
functionals of energy, for example the equation 

d,??""/ d/3 = ( 5  8, + 4p 8, - $ ' go)/ 8, = 0 

has no real solutions for the states with the quantum number n = 0 , l .  In such cases 
we propose to determine p under the condition that would differ as little as 
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possible from E ( 4 )  i.e. 

( d / d P ) ( E ( ” -  E ( 4 ) ) 2  = (E(N’- E(4))dE;”’IdP = 0 (15) 

where E ( 4 )  is the exact eigenvalue of the quartic oscillator. If equation ( 1 4 ~ )  for 
E ( N )  has no solutions, we find P values from the condition 

E ‘ ” =  E(4). (16) 

For N > 1, equations (14c)  and (16) have many solutions but we must choose those 
which introduce the minimum errors in E”’( U). We have proved that the solutions 
of equation (16),  if they exist, give much more accurate values of €“’(U) than the 
solutions of equation (14c) in the whole range of U and n values. The  important fact 
is that the method of renormalisation of PS presented above (equation (16)) also 
provides the convergence of PS for U += E, in the sense that ,E?”( U )  approaches the 
exact value of energy i.e. E‘”’(u) + u’”E(4) .  Such convergence has not been provided 
by the method of Killingbeck (1981) (see equation (14b)) o r  by the method proposed 
by Dmitrieva and Plindov (1979, 1980a, b which is referred to as I). Their method 
of calculation of energy is equivalent t o  the renormalisation of PS. Indeed, formula 
(12) for the energy E given in I can be obtained by expressing E in the form of 
renormalised PS 

E = %;+uz.l ,  + U%;+. . . 
with U = 42 and the renormalisation parameter /3 = 2A = 4 8 , /  8” (equation (6)  in I). 
However, with such a parameter P,  which is independent of the order N, rather low 
accuracy for the energy is obtained. The  relative errors in energy values obtained by 
this method with the additional Pad6 approximants applied a re  8 x for N = 5, 
while the corresponding errors obtained with our  method, without any resummation 
procedure, are of the order 5 X lo-’ (these results will be published elsewhere). 

3.2. The choice of renormalisation parameters for the quadratic-quartic-sextic oscillator 

The method of renormalisation of PS in a general case will be illustrated in the following 
example. 

Let us con5ider IAO( 1) with the potential 

v = ;x2+ u , x 4 +  u2x6, ~ : = 2 u ~ ( l + 3 ( 2 u ~ ) ” ~ )  

for which the energy of the ground state can be exactly determined (Singh et a1 1980) 

E = $ U , ( ~ U ~ ) - ’ ’ ~  

We  can rewrite the above potential in the form 

v = ; w 2 x 2 +  i i 1 ( X 4 +  (1 - w2)x2/2zi1) + u * ( x 6 +  (U1 - l i 1 )X4 /  uz). 

w 2 =  l+p l i i ,w- ’ ,  Cl = U1 +P2u2(wP1)r1  ( 1 7 4  b )  

If we introduce the coefficients P I  and P r  by the definitions 

then we can generate, in a similar way to  that of 0 3.1, the PS in terms of wk = Ukw-(k+2’:  
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Some of the first coefficients ‘8; are given below: 

86= 80, 

8; = 81-$3180, 

8’ 01 -8 - 01 -1 2 / 3 2  8 0, 

E(’) = w (  + W I  s; + W 2 8 b l )  

E‘2’= E ( ’ ) +  w (  w:s;+ wig; ,+ w1w28;1).  

s;, = $11  +;P1801+ P 2 8 1  - i P 1 P z ~ o ,  

s&* = so2+;/32sOl-Q/3:aO. 

a; = sz + pi81 - i/3: 8 0 ,  (18b) 

Let us calculate the first-order energy: 

and the second-order energy with respect to w1 and w2: 

From the equations ( d / d P k ) E ‘ ”  = 0 generalising equation (14b), we obtain: 

UltP1-481/80)+ uz(P2-6801/~0) = o  f o r N = l ,  ( 1 9 ~ )  

A = ( w u ~ ) ~ A I  + u:Az+wul~~A11 = O  for N = 2, (19b) 

where 

A i = ( 5  8 2 +  4/3181 -i@? go)/ 80, 

A2 = ( 7 8 0 2  + ? /32  80 i - ;/3 8 0 )  / 8 0 ,  

Ail = (6811 + ‘ P P 1 8 0 1  +4/3281 - ~ P 1 / 3 2 8 0 ) / 8 0 .  

Equation (19a)  has solutions for any u l ,  u2: 

/3:” = 481/ 80, pi1’ = 6801/ 80. 
Equation (196) in general cannot be fulfilled for any u1 and u2;  however, if U: >> U: 
we can determine P k  from the conditions 

A k = O  (20a) 
or 

dAk/d/3k = 0 (20b) 
if equation (20a)  has no real roots. It is worth noticing that the above equations are 
equivalent to the equations 

Let us calculate the P k  values for n = 0. From equation (20b) we have 

Pi2)=  1681/(380)  = 8, pi2)  = loso , /  8 0  = 37.5. 

They are close to P k  values obtained from the following conditions (compare equation 
(16)): 

(E(2))uz’o = E(4), p\” = 8.012 

and 

(g(2) )u ,=o = E(6) ,  pi2) = 40.00. 

The latter values give better results for the energy. 
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The values of the first- and second-order energy and their comparison with the 
exact energy are given in table 1. In order to show that the renormalisation of the 
constant u1 + Cl essentially improves the convergence of PS, the table also includes the 
results for P 2 = 0  ( u l  = C l ) .  This renormalisation is seen to increase the accuracy of 
results by one order of magnitude. 

Table 1. The ground state energy E of I A O ( ~ )  with the potential V = ; x ' +  u,x4+ u2x6 
and the first-order ( E ( ' ) )  and second-order (E'*') energies of renormalised perturbation 
theory. The parenthesis includes the pi2) values. 

~ 

U 2  0.01 0.1 1 10 100 
U1 0.1688 0.6844 3.2381 16.980 93.195 

0.5997 0.7759 1.1713 1.9515 3.3931 
E"'(0) 0.5962 0.7606 1.1264 1.8527 3.2038 
E'*'(40) 0.5966 0.7649 1.1444 1.8978 3.2938 
E 0.5967 0.7651 1.1448 1.8984 3.2949 

E"' 

Generalisation of the above consideration to the general problem is straightforward. 
For the anharmonic potential with M constants { u k }  we can introduce M coefficients 
{ P k }  by definition (17a)  and: 

c k - 1  = U k - l f P k c k ( a P k - l ) - l  

u,w = u,w 

for k = 2,3,  . . . M, 
(22) 

Introducing the renormalised constants w k  = 
relation satisfied by U ,  

k + 2 )  and taking into account the 

we can generate the renormalised PS (1 8a) for IAO(D). We determine the renormalisa- 
tion parameters P k  from the conditions 

( ELN)) =o = E( 2 k + 2), k # i  (24) 

where 

E ( 2 k + 2 )  is the eigenvalue of IAO(D) with potential V = r2k+2,  or from equation (21) 
if equation (24) has no solutions. 

3.3. Renormalisation of a W K B  type 

The method of determination of parameters { P k }  presented in 9 3.2 is not the only 
possible one. For highly excited states with n >> 1, we propose to employ another way 
of determining { P k }  as equations (21) strictly only give the optimum { P k }  values for 
n = 0 if N + CO. The method proposed below allows a higher accuracy of eigenenergy 
values to be determined; this is illustrated in the example which follows. 
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Let us calculate the first-order energy I?” fo r  a quartic oscillator. With this purpose 
in mind, we take in equations (14), (15b) the value of w calculated from equation 
(1 1) for the limiting case when U + CO: w, = ( P u ) ” ~ .  So we have 

E(’ )  = p ” 3 ( i g 0 + p - 1  8,) = C ( I ) , E ; / ~ (  1 + ~ / ( L $ E : ) ) ” ~  

= C ‘ ” E ~ ’ ~ ( ~ + ~ ‘ ~ ’ E , ’ + .  . .). 

The expression obtained €or E“) has a form of WKB type expansion (Hioe and Montroll 
1975) in which C“’ = 61’3($) = 1.362 84 is replaced by C = 7 ~ ~ 3 ~ ’ ~ ( r ( a ) ) - ~ ’ ~  = 1.376 51 
and a“)=h is replaced by 

6 ,  = 1 / (97~)  for D =  I .  

In order for the renormalised PS t o  give good results for high states (similarly as WKB), 
it is sufficient t o  assume p = with the parameter x depending only on an order 
of perturbation theory chosen so that C‘”(X) = C. Then we obtain: 

The introduction of the parameter x gives an exact value of the WK13 zero-order term 
and the higher W K B  terms are produced by perturbation theory. The  same type of 
expansion of E i N )  is also obtained when @-‘(Eo)  is a function which can be expanded 
as a series: 

p- ’  = x3E;l 1 +E bkEiZk . (26) 
( k  ) 

Thus, the proper way of renormalisation of PS regulated by { bk} parameters combines 
the virtues of both the WKB and the perturbation methods. Let us take the simple 
function 

p - ’  = x 3 E i 1 ( l  +b(E:+gE,’)--’) (27) 
which can be expanded as series (26).  

The term g E i Z  gives an essential contribution to p only for the lowest states and 
rapidly decreases with increasing Eo. In this way, the values of energy for n - 1 are  
improved while the values for n >> 1. when the W K B  method gives very good results, 
a re  not disturbed. 

Let us define the parameter b such that a \ ” (  b )  = 6,.  This assumption and equation 
(27) lead to the expression for the quartic oscillator energy when g = 0 obtained by 
Mathews et a1 (1982) as a result of the analysis of non-diagonal matrix elements of 
the Hamiltonian in the harmonic oscillator basis. Their approach is equivalent t o  the 
renormalised first-order perturbation theory. 

The  x values obtained from the condition Ci”(x) = C in the form 

1 + 3x’ = 2cx  

are 

~ ( , , = 0 . 6 0 7  238, ~ ( 2 )  = 0.497 079 

and the corresponding values of b: 

b = ( 2CS1 x - 9x3/4)/ ( 6x3 - 1) 
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are  

61 = -0.950 372, b, = 0.498 544. 

Mathews et a1 have accepted the first solution. But we prefer the second since the 
least value of x in the N t h  order of perturbation theory gives :he most accurate results 
for n - 1. In table 2 we compare the first-order energies E','' calculated with pp = 
48,/80 and with pw determined by formula (27). The results a re  the  illustration of 
the fact that pp is the optimum only for n - 1, while pw gives better results for n 3 2. 
The introduction of the parameter g = -0.45 modifies pw so that pw(g) pp for n - 1 
and due  to  this we obtain a good estimation of the energy for the whole range of the  
quantum number n. 

Table 2. The first-order eigenenergies of a one-dimensional quartic oscillator calculated 
with the P, (equation (14a)) and with the P, (equation (27)). 

n 0 1 2 4 10 20 

P P  6.00 10.00 15.60 27.33 63.14 123.07 
p,. g = O  1.36 10.00 18.85 35.76 85.10 166.71 
P,+, g=-0 .45  6.00 9.82 18.835 35.76 85.10 166.71 
E ( P,) 0.6814 2.4237 4.6850 10.1665 31.3587 76.477 95 
E(P,), g = o  0.8881 2.4237 4.7033 10.2457 3 1.6596 77.236 11 
E(&+), g=-O.45 0.6814 2.4238 4.7031 10.2457 31.6596 77.236 11 

(680) (3936) (6968) (33) (5) (08) 

Higher accuracy of results can be obtained in a higher order and applying a longer 
expansion of p - ' ,  In the tables 3 and 4 we present the results for quartic one- 
dimensional and three-dimensional oscillators respectively, obtained with p-' of 
the form 

p - ' =  ~ ~ E ~ ' ( l + ( b ~ + e ~ A ~ ) E ~ ~ + ( b ~ + e ~ A ~ ) ( E ~ + g ~ + g , E ~ ~ ) - ' )  
The values of the parameters x, b, ,  b2 are  chosen from the conditions 

e2'( x) = c ,  8CX=3+x3(24-36x3),  

x = 0.395 122 788, 

a y ) (  b,) = S I ,  

bl = 0.388 1968, 

a:2'(b2) = a,, 
b2 = 6[CS,x+ b,(x3( b, -4) +&x6(68bl + 335) -$Cb,x)], 

b2 = 0.408 95, 

b, = 3[ 1 6 C 6 , ~  + x3(67x3 - 12)]/(8B),  

where 
B = x3( 18 - 51x3) - 2 c x  

(for the calculation of S,, see the appendix). The parameters g,, g, are  calculated 
from the conditions 

p w = p , f o r  n=0 ,1 ;  g,= -4.761 114, g2= 1.108 314. 
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Table 3. The second-order eigenenergies of the one-dimensional quartic oscillator. 

n El21 

0 
1 
2 
3 
4 
6 
8 

10 

0.667 9862 (2) 
2.393 6440 ( 0 )  
4.696 720 (95) 
7.335 816 (730) 

10.244 334 (08) 
16.711 8950 (896) 
23.889 9952 (36) 
31.6594571 (65) 

Table 4. The second-order eigenenergies of quartic IAO(3). 

n l l  0 2 4 6 8 
~ 

0 2.393 644 (4) 
2 7.335 816 (730) 6.846 (30) 
4 13.379 348 (37) 13.010 (05) 12.163 (59) 
6 20.220 852 (48) 19.917 6 (60) 19.224 (18) 18.140 (52) 
8 27.706 394 (2) 27.445 96 (4) 26.848 ( 5 )  25.923 (19) 24.658 (89) 

10 35.740 316 (2) 35.510 3 (10) 34.98021 (15 )  34.160 (57) 33.051 (6) 

n l  I 1 3 5 7 9 

1 4.496 (78) 
3 10.103 7 (0998) 9.412 (01) 
5 16.600 4 (5995) 16.053 (46) 15.078 (82) 
7 23.796 28(2) 23.333 8 (15) 22.516 6(10) 21.337 (58) 
9 31.577 8 (81) 31.173 5 5  (6) 30.457 8 (48) 29.436 25 (17) 28.094 (135) 

11 39.868 65 (901) 39.507 3 (85) 38.865 61 (43) 37 951 6 (494) 36.763 (71) 

To take account of a proper change in energy with the quantum number I we introduce 
parameters e,, e2 for D = 3 empirically (results for 1 Z 0 are much less accurate than 
for 1 = 0). The accuracy of the second-order eigenenergies of the quartic IOA(D) for 
1 = 0 is at least two decimal places higher when compared with the first-order (compare 
tables 3 and 4 with table 2 and also with tables 1 and 3 of Mathews et a1 1982). For 
n > 20 our results are also much better than the numerical results of Bell et a1 (1970a, b) 
in which only eight significant figures are correct. We prove this fact by calculating 
the WKB fourth- and fifth-order eigenenergies (see appendix); they coincide with each 
other with an accuracy of ten significant figures. 

4. Conclusions 

Hypervirial theorems are applied to construct PS for energy and expected values of r’ 
for a general IAO(D). The transformation of the PS obtained is introduced to derive 
the renormalised PS. Two methods of determining the renormalisation parameters 
( P k }  are proposed. One of them is based on searching for the minimum of (ELN)- 

E ( 2 l ~ + 2 ) ) ~  (see equations (15) and (21), (24)) and yields good results for the lowest 
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states with n - 1. The second method is based on employing the expansion of p i '  in 
series (26) and on the information given by the WKB approach. With this method, a 
high accuracy of results is obtained for n >> 1 .  

A combination of the two approaches allows simple analytical formulae to be 
obtained for calculation of the eigenenergies of IAO(D) with high accuracy in the 
whole range of quantum numbers n, 1 and anharmonic constants {uk} .  
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Appendix 

We derive here an analytic expression for the higher-order WKB eigenenergies of the 
one-dimensional quartic oscillator. The WKB quantisation condition is 

EO=C I k  
k 

where for the potential V = x", and h/(2m)1'2 = 1, following Kesarwani and Varshni 
(1981), we have 

X O  

I o = L j  ( E - ~ ~ ) l ' ~ d x ,  xo = E 'I4, = -*o 

I k  = 2 A:,!,dmJ,,/dEm, k = 1 , 2 ,  . . .  
m, n 

The integrals 
*o 

J,, = x n (  E - x4)-1'2 dx 

can be easily evaluated: 

Jn = $E'"-1)/4r-'(a(n + 3))r(a( n + l ) ) r ( i ) .  

Now, the energy eigenvalues are determined from the equation 

Taking the A:,!, coefficients from Kesarwani and Varshni (1981) we have (for N = 5 )  

C1=3(2T)- 3 / 2 r 2  (d, 1 c2 = -( 12vc1)-1, 

c3 = 22 x 4-5c, ~4 = -(4697/30)4-4~. CS = -( 1170 195/14)4-'~,. (A2) 

We solve equation ( A l )  by iteration, starting from E =Eo.  As a result we obtain the 
analytic formula 
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where 
c = c;4/3, 

6, = $c,cz, 

S2=$c:(5c:+6c,c3), 

s3 = (3) c:[ 1 1 c2( 4 c:' + 9 C ]  Cj) + 27 c: cq 1, 
64 = & c ~ [ c ~ ( 7 1 5 c ~ +  3096c,c3) + 12c:( 126c2c4+ 81c:)+ 324c:cS]. 

Numerical values of these constants are given by the following 

C = 2.185 069 300, 

8 ,  = -0.035 367 765, 

6 ,  = 0.001 765 731, 

8 2  =0.003 527 580, 

64=-0.004 125 822. 

Formula (A3) approximates the solutions of equation ( A l )  with an error of less than 
lo-* for n 3 3. The accuracy of the eigenenergies calculated from (A3) improves 
rapidly with increasing n. For n > 8 an accuracy of ten significant figures is achieved. 
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